R THE WORK BREAKDOWN STRUCTURE IN AN ACQUISITION REFORM ENVIRONMENT

Prepared For:

COST SCHEDULE PERFORMANCE MANAGEMENT CONFERENCE

Prepared By:
Neil F. Albert
MCR Federal, Inc.
700 Technology Park Drive
Billerica, MA 01821
(978) 670-5800

MC

OVERVIEW

- Background
- Acquisition Reform
- Work Breakdown Structure Definition
- Work Breakdown Structure Development Process
- Uses of Work Breakdown Structure
- Contract Business Management Overview
- GAO Review
- Issues in Work Breakdown Structure Development
- Relationship with Contractor Management System
- Summary

BACKGROUND

- MIL-STD-881 Developed to Standardized Materiel Defense Items Definitions for Planning, Coordinating and Controlling the Technical and Cost Aspects of a Program
- Reflect Importance of:
 - Technology
 - Software
 - Contractor Organization/Practices
- With Acquisition Reform, MIL-STDs no longer applicable
 - MIL-STD-881 remained essentially in effect (Kaminski Letter)
 - Implementation was still required for Program Managers
 - Contractors utilize to ensure complete and accurate reporting
- MIL-HDBK on Work Breakdown Structures replacing MIL-STD
 - Focus on Government vs. Contractor implementation
 - Follows Acquisition Process

ACQUISITION REFORM

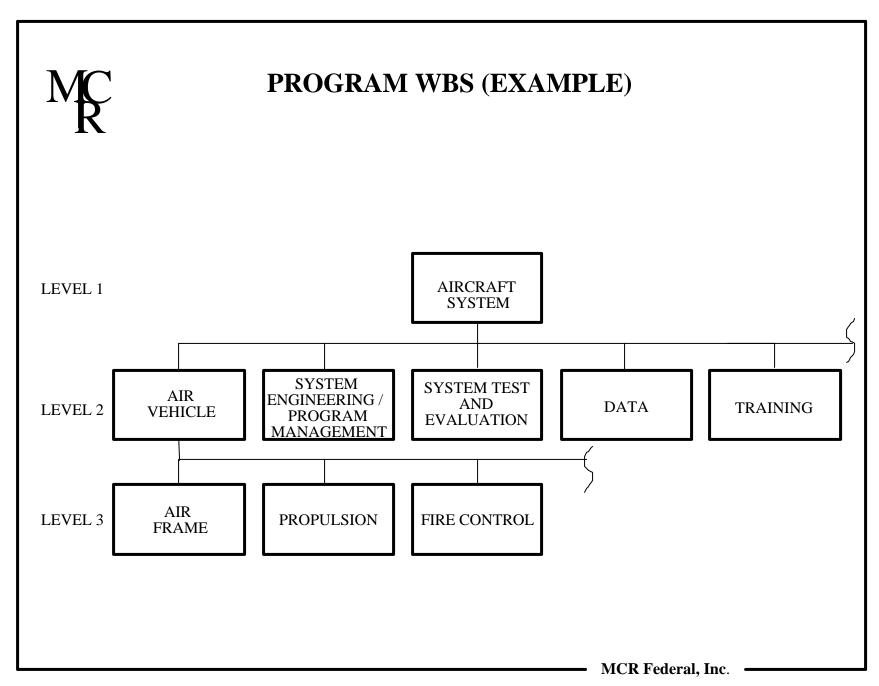
- Implementation of Acquisition Reform includes:
 - Streamline Acquisition (Commercial Practices)
 - Use of Integrated Product Teams
 - EVMS vs. C/SCSC (Insight vs. Oversight)
 - Cost as An Independent Variable (CAIV)
 - Reduction of Government Oversight
 - SOO vs. SOW
 - Elimination of MIL-STDs and MIL-SPECs
 - Addition of Integrated Management Plans and Schedules
- The WBS Remains the Definitive Framework for Government and Industry Communication for Technical, Cost and Schedule Elements

WORK BREAKDOWN STRUCTURE DEFINITION

DEFINITION

- A Product Oriented Family Tree of Hardware, Software Services and Data Which Results from Systems Engineering Efforts During Development and Production of a System
- Displays and Defines the Product(s) and Relates the Elements of Work to Each Other and the End Product, and Completely Defines the Program
- Plays a Key Role in Developing/Tracking Costs; Provides a Framework for Financial Reporting
- A Work Breakdown Structure (WBS):
 - Does Not Drive a Program's Requirements
 - Helps Identify the Interfaces Between the Government and Contractor, and Between Contractors
 - Provides the Framework for Integrating the Program Acquisition Requirements

MCR	Fede	ral.	Inc.


WORK BREAKDOWN STRUCTURE DEFINITIONS (CONT'D)

Two Types of Work Breakdown Structures:

- Program Work Breakdown Structure Encompasses Entire Program and Consists of Atleast Three Levels of the Program
 - Used by Government to Define the Contract WBS
 - Used by Contractors to Develop and Extend a Contract WBS
- Contract Work Breakdown Structure is the Approved WBS for Reporting Purposes and its Discretionary Extension by the Contractor
 - Includes All the Elements for the Products Which are Responsibility of the Contractor
 - Contract Work Statement should Provide the Reporting Requirements

WBS LEVELS

- Level 1
 - Entire System
 - Program Element, Project or Subprogram
- Level 2
 - Major Elements of the System
 - Top Level Aggregations of Services or Data
- Level 3
 - Subordinate Items to Level 2 Elements
 - Generally Common Across Similar Programs

EXPANDED PROGRAM WBS (EXAMPLE)

DDOCDAM					
PROGRAM WRS					
1	2	3	4	5	
FX AIRCE	AFT AIR VEH	TOT E			
	AIR VEH	AIRFRA	ME		
			SION (SK		
				NS/IDENTIFICATION	
		NAVIGA FIRE CO	TION/GU NTROL	DANCE	
		I IKE CO	RADAR		
				RECEIVER	
				TRANSMITTER ANTENNA	
				RADAR APPLICATIONS S/W (TO CSCI LEVEL)	
				RADAR SYSTEM S/W (TO CSCI LEVEL)	
				RADAR INTEG., ASSEMBLY, TEST AND CHKOUT	
			L COMPU	HT CONTROL	
		ELECTR	ONIC WA	RFARE	
				RY EQUIPMENT	
		ARMAN			
	SYSTEM	TEST AND	PMENT T	EST AND EVALUATION	
		OPERAT	IONAL TI	ST AND EVALUATION	
		MOCKU			
		TEST A	ID EVALU CILITIES	ATION SUPPORT	
	SYSTEM			GRAM MANAGEMENT	
		SYSTEM	S ENGIN	ERING	
		PROGRA	M MANA	GEMENT DISTIC SUPPORT	
	PECULIA	R SUPPOR	T EQUIPM	ENT	
		TEST A	ID MEASI	REMENT EQUIPMENT	
				NDLING EQUIPMENT	
	TRAININ	N SUPPOR	EQUIPM	ENT	
	110,111,111		NANCE T	RAINERS	
				NG DEVICE	
	DATA	TRAINI	G COURS	E MATERIALS	
	DATA	TECHNI	CAL PUBI	ICATIONS	
		ENGINE	ERING DA	TA	
			EMENT D	ATA	
			T DATA EPOSITO	y	
	OPERAT	ONAL/SIT			
				CHNICAL SUPPORT	
	INITIAL	SPARES A	ID REPAII	PARTS	
	1				
	1				
	1				
	1				
	1				
1	ı	ı	ı		

AUTOMATED SOFTWARE SYSTEM WORK BREAKDOWN STRUCTURE

LEVEL 1

Electronic/Automated Software System

LEVEL 2 LEVEL 3

Prime Mission Product (PMP) Electronic Subystem 1 ..n (Specify Names)

PMP Applications Software

PMP System Software

PMP Integration, Assembly, Test and Checkout

Platform Integration

System Engineering/Program

Management

System Test and Evaluation Development Test and Evaluation

Operational Test and Evaluation

Mock-ups

Test and Evaluation Support

Test Facilities

Training Equipment

Services Facilities

Data Technical Publications

Engineering Data
Management Data
Support Data
Data Depository

AUTOMATED SOFTWARE SYSTEM WORK BREAKDOWN STRUCTURE (CONT'D)

LEVEL 1 LEVEL 2 LEVEL 3

Peculiar Support Equipment Test and Measurement Equipment

Support and Handling Equipment

Common Support Equipment Test and Measurement Equipment

Support and Handling Equipment

Operational/Site Activation System Assembly, Installation and Checkout on Site

Contractor Technical Support

Site Construction

Site/Ship/Vehicle Conversion

Industrial Facilities Construction/Conversion/Expansion

Equipment Acquisition or Modernization

Maintenance (Industrial Facilities)

Initial Spares and Repair Parts

AUTOMATED SOFTWARE SYSTEM WORK BREAKDOWN STRUCTURE (CONT'D) Software Extension

<u>LEVEL 4</u> <u>LEVEL 5</u> <u>LEVEL 6</u>

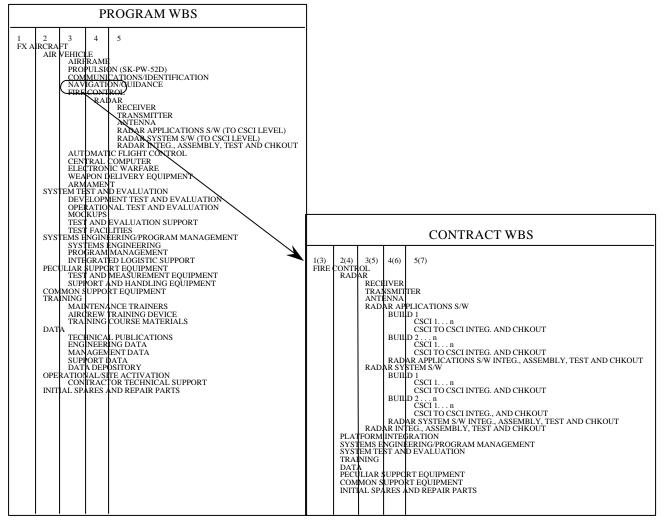
Build 1...n CSCI 1 CSC 1...n

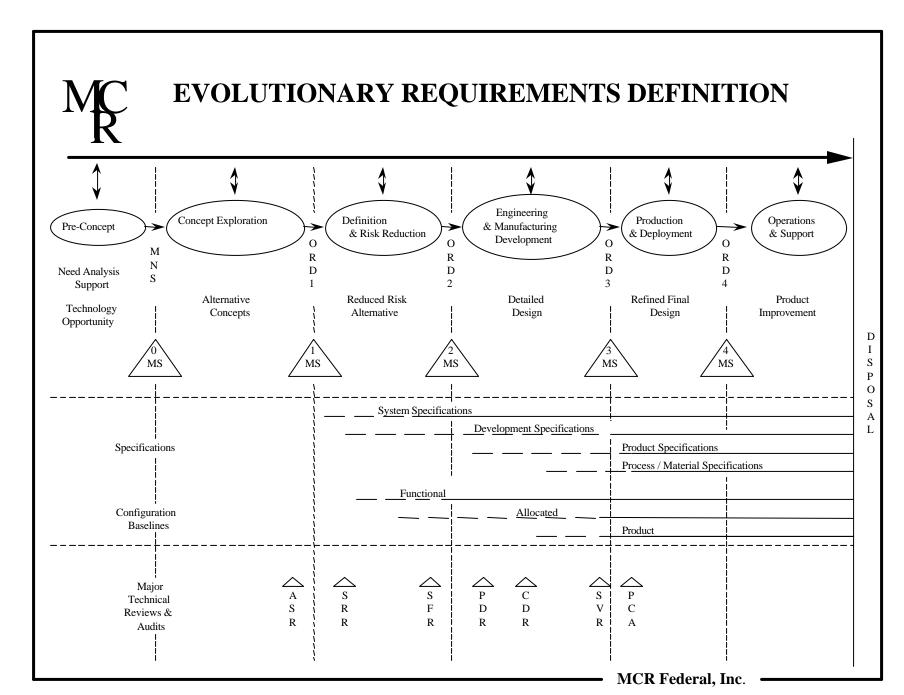
CSC to CSC Integration and Checkout

CSCI 2 CSC 1...n

CSC to CSC Integration and Checkout

CSCI 3 CSC 1...n


CSC to CSC Integration and Checkout

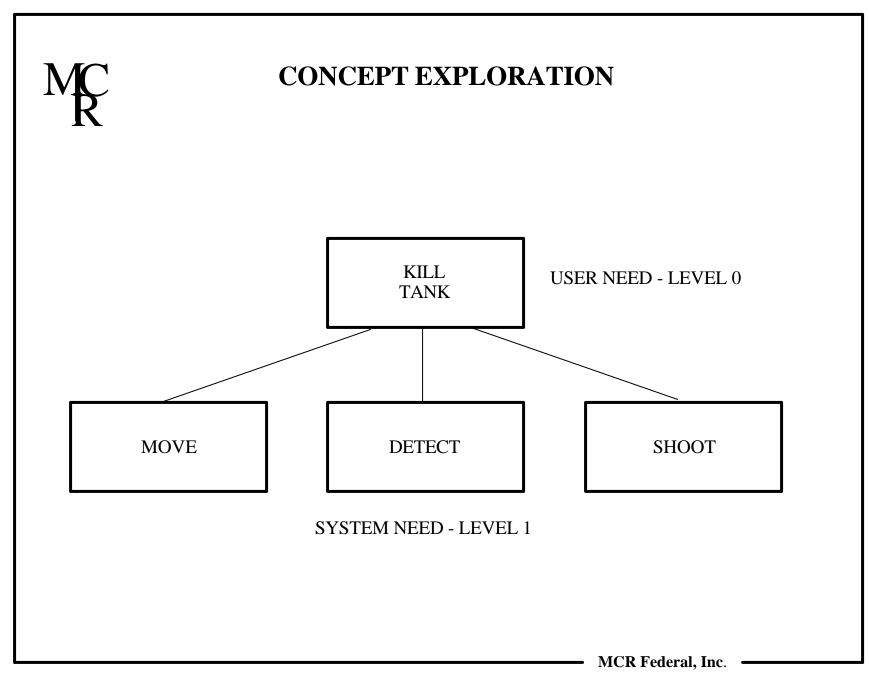

CSCI to CSCI Integration and

Checkout

RELATIONSHIP OF PROGRAM WBS WITH CONTRACT WBS

THE EVOLUTION OF WORK BREAKDOWN STRUCTURE

MC


SYSTEMS DEVELOPMENT Mission Need and Analysis

SYSTEMS ENGINEERING

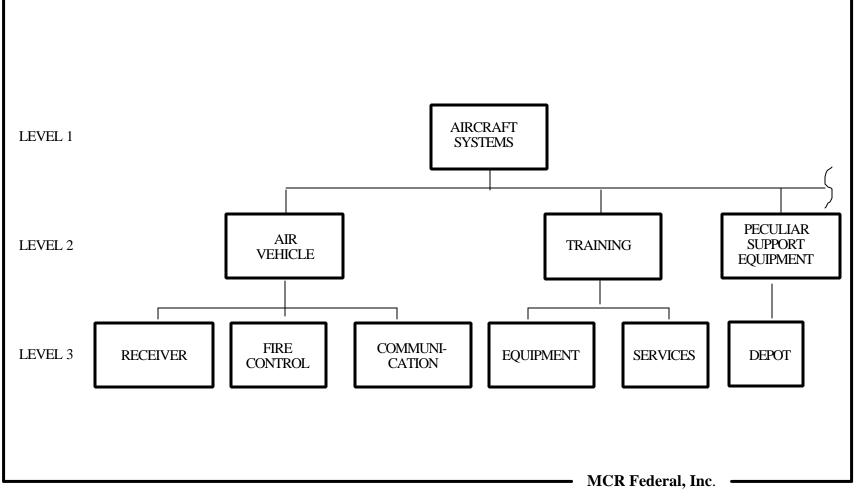
- Pre-Concept
 - Need Analysis Support
 - Identifying Technology
 - Systems Engineering Intensive
- Concept Exploration
 - Mission Need Statement
 - Exploratory Trade-Off Studies
 - Preliminary System Level
 - Functions
 - Performance
 - Top Level Specifications

WBS DEVELOPMENT

No Formal WBS Defined

PROGRAM DEFINTION & RISK REDUCTION

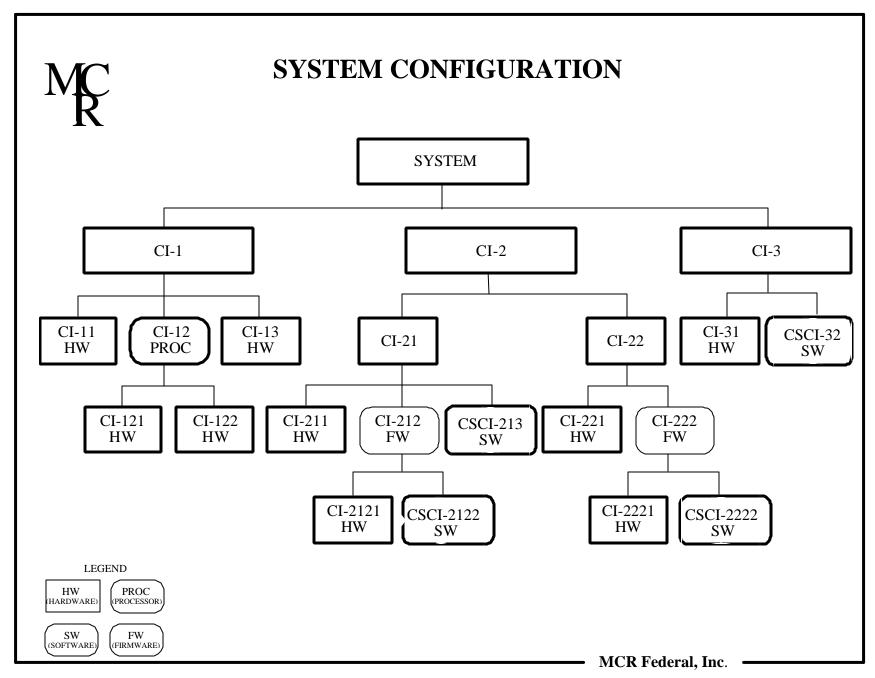
SYSTEMS ENGINEERING


- Operational Requirements Document (ORD)
 - Approved Program
- System Level Performance Requirements
 - Prove Critical Technologies and Processes
 - Type"A" or "B" Specifications
- CAIV Implementation
- Preliminary Configuration Items
 Within a Functional Architecture
- Preparation of Statement of Objectives

WBS DEVELOPMENT

- Preparation of:
 - CCDR Plan
 - Preliminary Program WBS to Level 3
 - Schedule and Cost Estimates
- Prepare CAIV Trade-offs for each WBS element

PROGRAM DEFINITION & RISK REDUCTION


ENGINEERING & MANUFACTURING DEVELOPMENT

SYSTEMS ENGINEERING

- Updated Operational Requirements Document
- Detailed Design
 - Preliminary Design Review
 - Critical Design Review
 - Lower Level Specification
 - Product and Process/Material Specifications
- Configuration Defined
 - Specification Tree
 - Configuration Items (CI) or
 Computer Software
 Configuration Item (CSCI)
- Cost/Performance Trade-offs

WBS DEVELOPMENT

- Approved Program WBS
- Statement of Work Developed by Contractor
- Approved Contract WBS
- Extension of Contract WBS by Contractor
- Continue CAIV Trade-offs
- Cost/Schedule Performance Measurement

PRODUCTION

SYSTEMS ENGINEERING

- Produce Prime Mission Product
- Maintain Configuration Management
- Improve Performance through CAIV implementation

WBS DEVELOPMENT

- Maintain Program and Contract WBS
 - Major Modifications
 - Relationship to Process and Configuration Control
- Continue CAIV Trade-offs
- Cost/Schedule Reporting

USES OF A WORK BREAKDOWN STRUCTURE

- Technical Management
 - Provides Framework for Defining the Technical Objectives of the Program
 - Together with Contract SOW and Product Specification, Aids in Establishing a Specification Tree, Defining Configuration Items, and Planning Support Tasks
 - Contract Statement of Work (SOW)
 - Describes What Products and Services are to be Delivered
 - An Effective SOW will Facilitate Effective Contractor Evaluation After Contract Award
 - A Standardized WBS is a Template for Constructing the SOW and the Contract Line Items (CLINs) - Streamline the Process
 - Use the WBS to Provide the Framework and Facilitate a Logical Arrangement of the SOW Elements
- Specification Tree
 - Hierarchy of Performance Requirements for Each Component Element of the System for Which Design Responsibility is Assigned
 - Specifications May Not be Written for Each Product
 - May Not Match the WBS

MCR :	Fede	eral,	Inc.
-------	------	-------	------

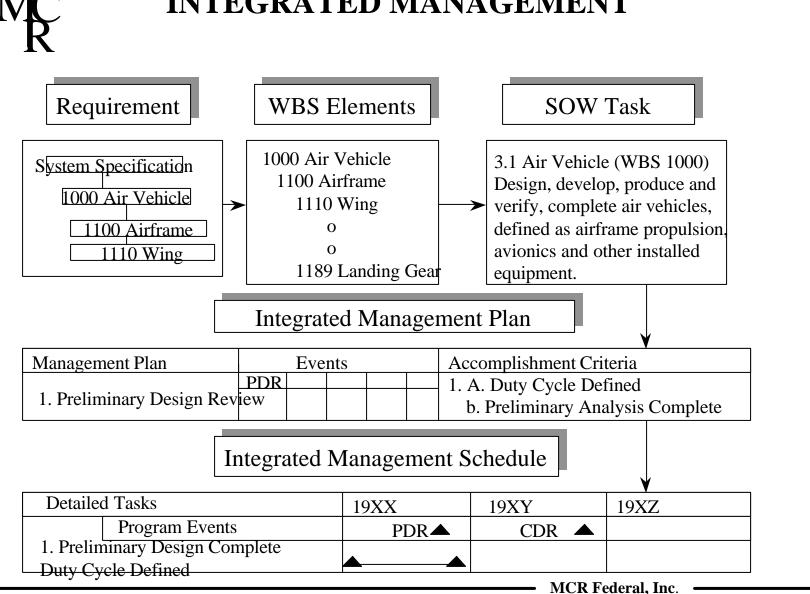
USES OF A WORK BREAKDOWN STRUCTURE (CONT'D)

- Configuration Management
 - Process of Managing the Technical Configuration of Items Being Developed
 - Need to Designate Which Contract Deliverables are Subject to Configuration Management Controls
 - Configuration Item (CI)
 - Computer Software Configuration Item (CSCI)
 - Framework for Designating the Configuration Items in the WBS
- Financial Management
 - WBS Assists Management in Measuring Cost and Schedule Performance
 - Products are Identified in Terms of Cost and Schedule Performance Goals
 - Serves as the Basis for Estimating and Scheduling Resource Requirements
- Cost Estimating
 - Facilitates Government to Plan, Coordinate, Control and Estimate Various Program Activities
 - Provides Common Framework for Tracking Estimated and Actual Costs

USES OF A WORK BREAKDOWN STRUCTURE (CONT'D)

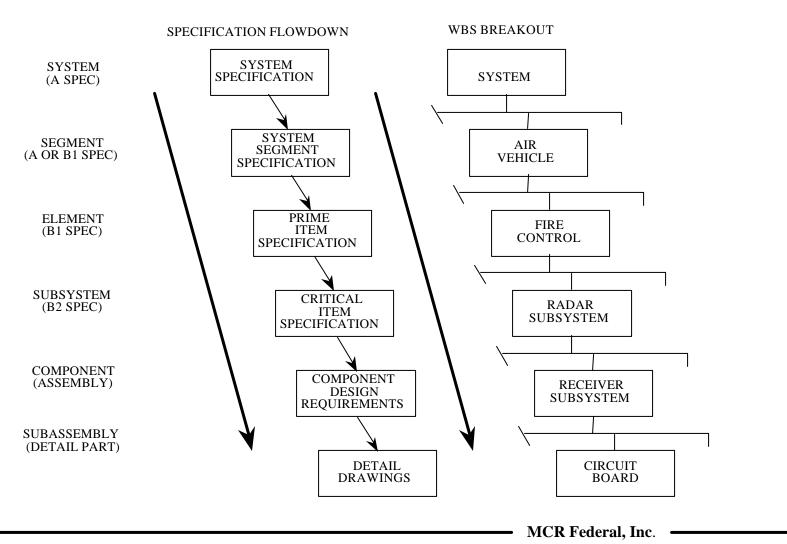
Data Bases

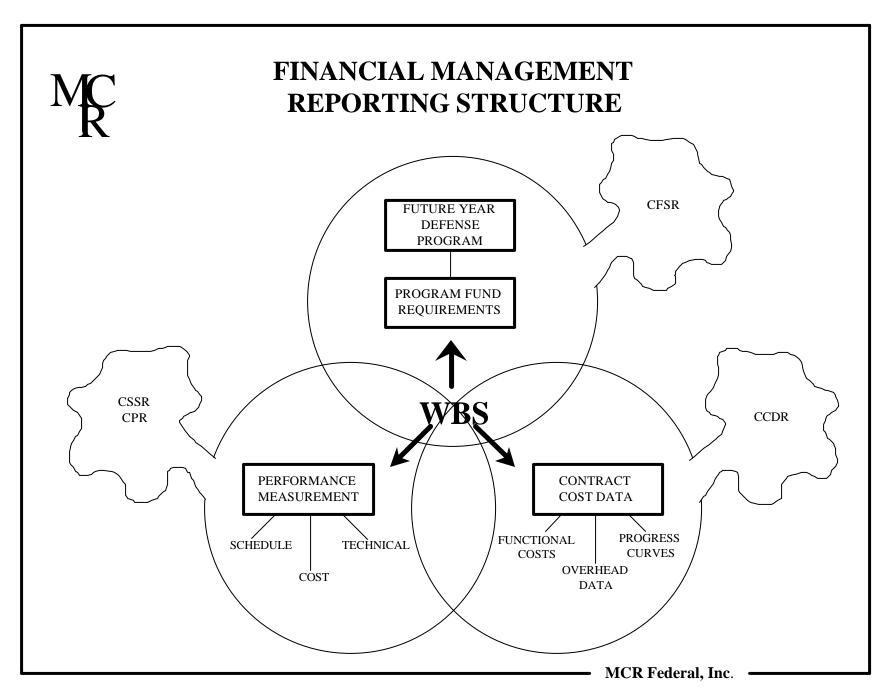
- Used for Pricing and Negotiating Contracts and Contract Changes, and for Follow-on Procurement
- Provides Cost Data Base of Similar WBS Elements from Different Programs
 - Used to Develop Learning Curves, Regression and Other Techniques to Estimate the Cost Requirements
 - Provide Comparison to the Original Estimates
 - Assists in Bidding Future Contracts and Budgeting New Work



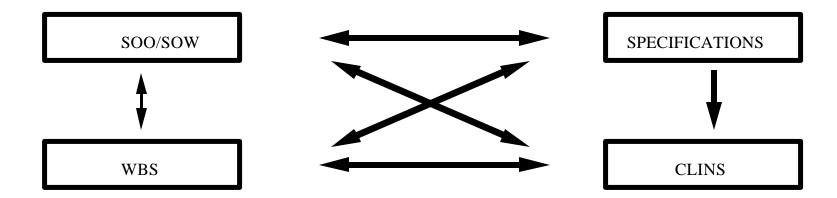
RELATIONSHIP TO MANAGEMENT PLAN AND SCHEDULE

- Project Control Is the First Unit of Control
 - Integrated Management Plan (IMP) Ties Contractual Work Scope With Technical Plans and Goals of the Program
- Time or Schedule Is the Second Unit of Control
 - Integrated Management Schedule (IMS) Ties Contractual Work Scope to Schedule or Milestones Goals
 - Understanding the Duration to Go From Step One to Step Two of the Work Scope the Better the Plan and the Better the Control
- Identifying Resources Is the Third Unit of Control
 - Identifying Materials, People and Tools to the Work Scope Definition Will Determine How Well the Project Is Utilizing Resources and How Performance Is Measured.




INTEGRATED MANAGEMENT

RELATIONSHIP OF SYSTEM DESIGN AND WBS



INTEGRATING PROGRAM ACQUISITION REQUIREMENTS

- Generated by Government
- Identifies Work to be Performed

• Define the System

- Ties System Definition with Work to be Performed
- Conforms to MIL-HDBK
- Framework for Technical, Cost,
 Schedule Reporting

- Identifies Contractual Requirements
- Tied to SOO/SOW or WBS

MC

CONTRACT BUSINESS MANAGEMENT OVERVIEW

- RFPs Identify Significant "Misapplication" of Reporting Requirements
 - Timely Development of CCDR Data Plan
 - CCDRs Not Used; Go To Unknown Staff
 - WBS Changes After Contract Award
 - Drive Reporting to Too Low of Level
 - Tailoring Not Allowed
 - CLINs Cause Separate Allocation
- 50% Have WBS Implementation Problems
 - Poor Software WBS Definition
 - WBS Not oriented to Development Type Contracts
 - Conflicts Between Types of WBS Used
 - Extending WBS Below Reporting Level Requires Permission

CONTRACT BUSINESS MANAGEMENT OVERVIEW (CONT'D)

- Program Manager Involvement
 - Key Individual in Process
 - Upfront Planning Drives Quality of Output
 - Business Planning Ownership Should Not be Diffused
- Poor Communication
 - Industry/Government Relationship
 - WBS Development Inconsistent Across Services
 - WBS Must be the Tool for Integrating the Functions and Communicating the Needs

GAO REPORTFINDINGS May 1997

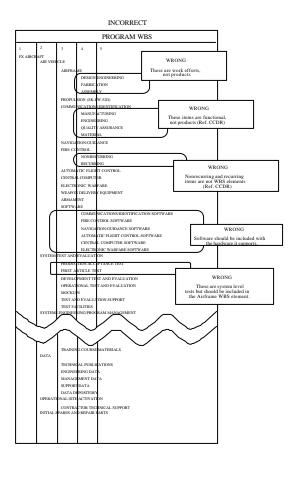
- Found contractor systems inconsistent with Government requirements for reporting
- Levels of reporting were often too low
- Disconnect between cost account and development processes
- Estimating and C/S requirements out of sync
- CCDR procedures and processes being revised
- Standardized WBS could provide consistency (but could cause problems if improperly implemented)

MC

ISSUES IN WORK BREAKDOWN STRUCTURE DEVELOPMENT

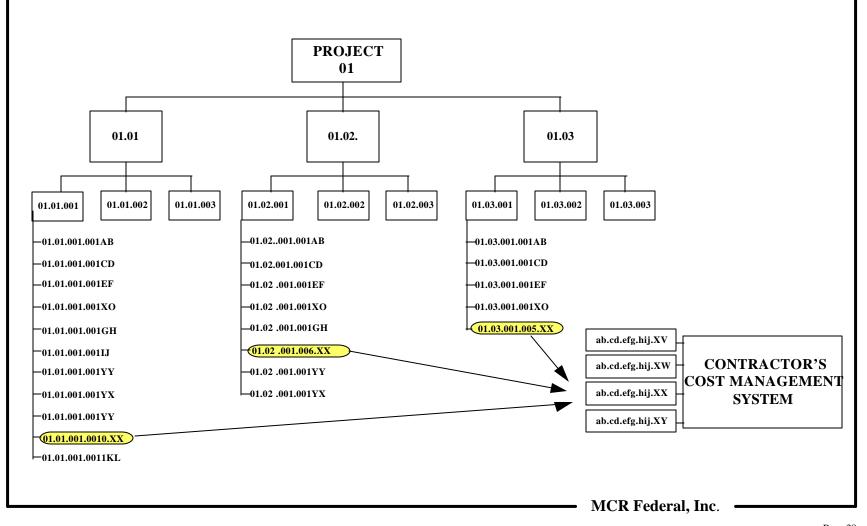
- Element of a Program that are Not Products
- Program Phases (e.g., Production), and Types of Funds (e.g., Research, Development, Test and Evaluation)
- Rework, Retesting and Refurbishing
- Non-recurring and Recurring Classifications
- Organizational Structure (Functional vs. IPT)
- Tooling (e.g., Special Test Equipment, and Factory Support Equipment Such as: Assembly Tools, Dies Jigs, Fixtures, Handling Equipment, etc.)
- Production Acceptance Testing of R&D (Including First Article Test) and Production Units

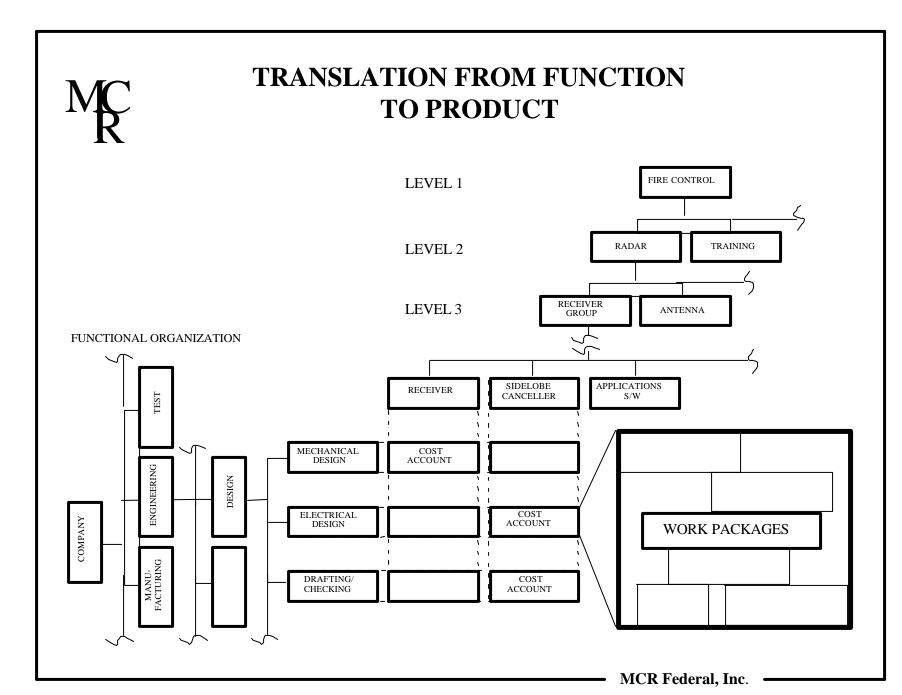
ISSUES IN WORK BREAKDOWN STRUCTURE DEVELOPMENT

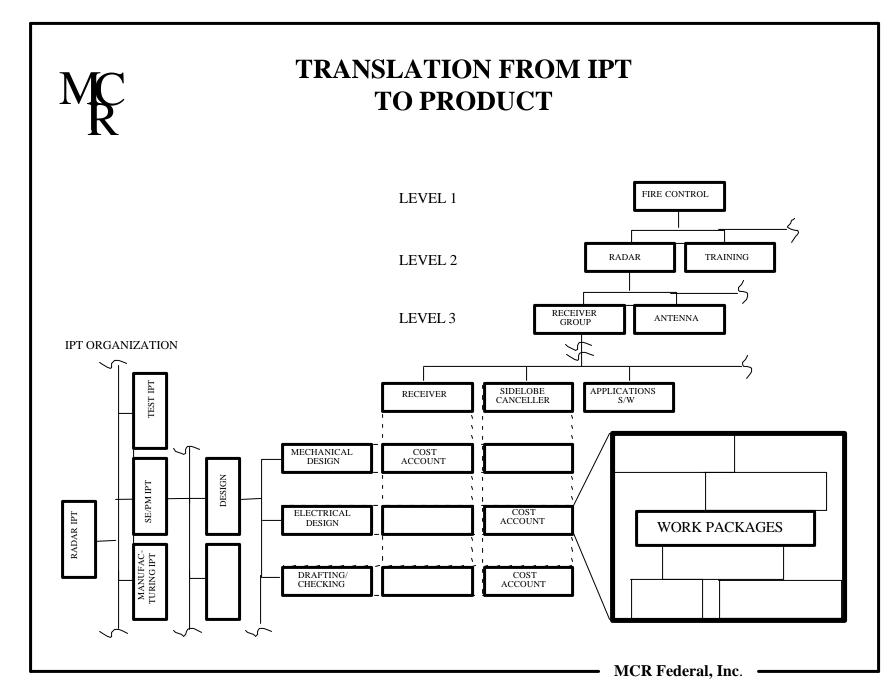

- The Integrated Management Plan (IMP) and Integrated Management Schedule (IMS) should reflect the WBS
- The IMP/IMS data contained within the CWBS framework should be reconcilable into a single IMP/IMS element.
- The WBS will serve multiple functions within the program. Design of the WBS should accommodate the requirements for:
 - Design To Cost (DTC)/Life Cycle Cost (LCC), Cost As an Independent Variable (CAIV)
 - Engineering Bill(s) of Material (EBOM), Manufacturing Bill(s) of Material (MBOM),
 - Product structure of the end items regardless of phase or funding
- Each subcontractor effort will be assigned to a single WBS element
 - Minor subcontractors (i.e., subcontractors with either little or no technical, schedule, and/or cost risk) may be grouped together under a single WBS element

MCR I	Federa	I, Inc.
-------	--------	---------

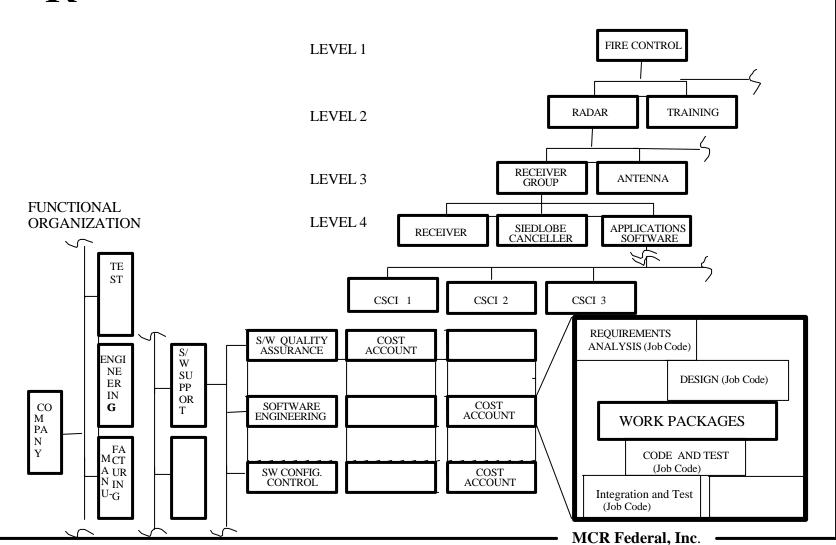
COMPARISON OF CORRECT AND INCORRECT PROGRAM WBSs

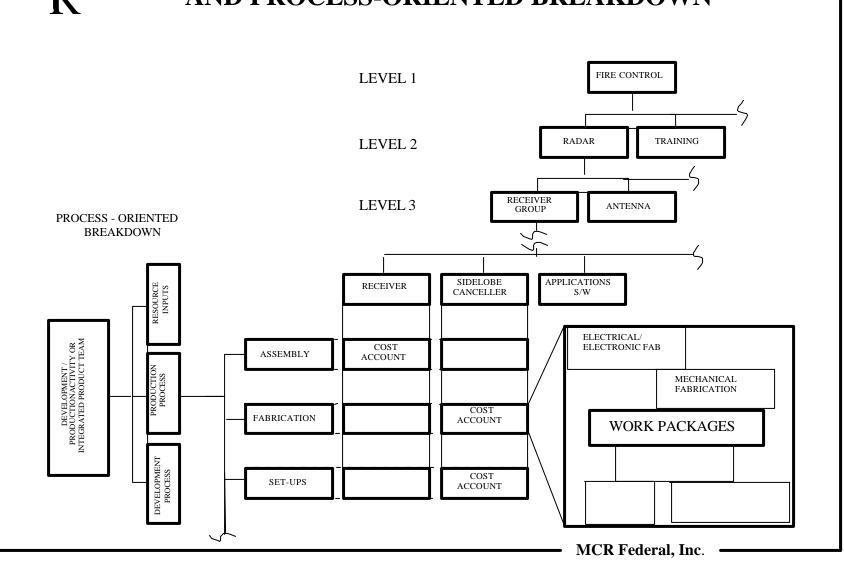



RELATIONSHIP WITH CONTRACTOR MANAGEMENT SYSTEM


- Contractor Should Assign Management Responsibility for Technical, Schedule, and Cost Performance (Cost Account Manager)
 - Cost Management System Should Provide the Necessary Visibility of the WBS as it Interfaces with the Organization
 - At Juncture of the WBS Element and Organization Unit, Cost Accounts are Usually Established
 - Performance is Planned, Measured, Recorded and Controlled

COST MANAGEMENT SYSTEM





LINKAGE BETWEEN CONTRACTOR WBS AND CONTRACTOR MANAGEMENT SYSTEMS

LINKAGE BETWEEN WORK BREAKDOWN STRUCTURE AND PROCESS-ORIENTED BREAKDOWN

SUMMARY

- Work Breakdown Structure is Product-Oriented Family Tree
- Develop program and Contract Work Breakdown Structure Based on How the System Will be Developed
- Use the Work Breakdown Structure as an Integrating Tool with the SOW,
 CLIN and System Design
- Acquisition Reform Provides Continued Use of WBS with IPT, CAIV, IMS, IMP, and Other Initiatives
- Extension of WBS at Too Low of Level Will Burden the Contractor Management System
- Use the WBS as a Medium for Communicating the Program Requirements